意念实时转语音!脸书的非植入式脑机接口准确率达76%

欢迎关注“创事记”微信订阅号:sinachuangs金花三张牌apphiji

今天,加州大学旧金山分校和Facebook在Nature Commuications上发表的一项研究显示:

他们在“非植入式”的穿戴设备上取得了最新进展,构建出了一个大脑-计算机系统,能准确解码佩戴设备的人听到和说出词语和对话,实时从大脑信号中解码。

也就是说,在这种脑机接口面前,你的所思所想已无处遁形,Facebook已经让意念打字成为了现实。

此前,马斯克的脑机接口公司Neuralink也发布过脑机接口系统,但这种植入式的设备需要向大脑中植入3000多个电极,以此来检测神经元的活动,但非植入式的设备就免去了复杂的植入步骤。

研究人员表示,目前对生成和感知的两部分语言进行解码,准确率超出了他们的想象,分别能达到61%和76%的准确率。

这项项目对于正常人和残疾人来说,都具有实用意义。

比如,你可以将思维直连到语音助手siri,查询天气、搜索信息不用直接喊出来了。

研究人员之一、加州大学旧金山分校神经外科医生Edward Chang表示,这是向神经植入物迈出的重要一步,因为中风,脊髓损伤或其他疾病而失去说话能力的患者,有望因此获得自然交流的能力 。

如何意念转语音

这项成果来自Facebook Reality Labs,一直与加州大学旧金山分校合作开展这项脑机接口的研究。

Facebook的设想是,设计一种可以将大脑信号转换成语言的装置,不需要劳动任何一块肌肉,深度学习就能直接读懂大脑,解码脑中所想,实现流畅交流。

为了进行试验,研究人员此前还招募了五名在医院接受癫痫治疗的志愿者。

他们先是从高密度皮层活动中提取相关信号特征。志愿者们说了上百句话,而通过植入性大脑皮层电图,研究人员可以跟踪控制语言和发音的大脑区域的活动,并将这些活动与志愿者说话时嘴唇、舌头、喉部和下颚的微妙运动联系起来,然后将这些运动学特征翻译成口语句子。

研究人员采用bLSTM循环神经网络来破译ECoG信号表达的运动学表征。

接着用另外一个bLSTM金花三张牌app解码先前破译的运动学特征中的声学特征。

在这个过程中,两个神经网络都会被投喂训练数据,以提高它们的解码性能。

在今年的四月份,利用这样的方法,Facebook已经实现了以每分钟150词的速度帮你说出所思所想。

而在这篇最新的论文Real-time decoding of question-and-answer speech dialogue using human cortical activity中,他们在此前研究基础上,研究人员想进一步提高精度。

大多数金花三张牌app语音解码的工作原理是对一个人在想什么声音做出最佳猜测,在解码过程中可能会被“synthesizer”和“fertilizer”这类发音相似的单词混淆。

(责任编辑:金花三张牌)

本文地址:/yanjie/20210717/25735.html

上一篇:俄罗斯推出待机2个月的功能机:金花三张牌游戏售价超低廉
下一篇:硅谷怪象:钱多,信心降到十年最低